Can someone help explain to me the difference between hypertonic & hypotonic solution

Published

I understand some of it but some of my class is still confused on the lecture between hypotonic,, & hypertonic solutions. Let me see if I have this right...First of all, all these solutions go directly into the bloodstream or intravascular space, correct? I know it's all about osmosis...Anyways...

Hypotonic: Will draw water out from the intravascular space into the intracellular fluids. Ultimately which can cause cells to swell. i.e. can also be used to get electrolytes back into cell such as K+, & don't use for CHF patients or people with already low BP. Also, ideally you would give this to people whose cells are dehydrated or have high electrolyte lab values, correct?

Hypertonic: Will draw water out from the intracellular space & back into either the interstitial spaces or back into the intravascular space. Ultimately which can cause cells to shrink, & I assume you would use this solution for people with low electrolyte lab values.

So, this may be my main question then...What's the main difference between the two, purpose wise I guess is what I'm trying to ask? Hypotonic gets electrolytes back into cells it sounds like, & hypertonic keeps electrolytes still in the bloodstream?

Thanks in advance for anyone who helps explain this.

I was just reading about it, and like you, I was kind of confused.

This'll help. Really.

http://www.mhprofessional.com/downloads/products/007148986X/hurst_pathophysiology-ch01_986x.pdf (also see)

Na+ and Water Balance, or why you have to remember that serum sodium doesn't tell you anything at all about sodium , and that saline is not water and salt.

OK, thought experiment time: Draw pictures with little molecules or such if you like, it will help. You have a beaker full of salt water, with a Na+ level of, say, 140 (hmmmm, what a coincidence). You pour half of it out. What is the Na+ level in the remainder? Right, 140, because that measurement is a measurement of CONCENTRATION, not a count of the absolute number of sodium molecules. Got that? If not, work on it, because you have to "get" it.

Now you refill the beaker to its previous level, full up, with plain water... or, say, D5W, which is the same thing, physiologically. Now what's your sodium level? Right, 70, because you have twice as much water per amt of sodium.

Go back to the half-full beaker again, the one with a serum (oooh, a Freudian slip! I think I'll leave it. Serum counts as saline.) sodium of 140. Fill it up with an equal volume of....normal saline, which for purposes of this discussion has a sodium level about the same as blood serum. What's the serum sodium now? Right, still 140. As a matter of fact, you can pour quite a bit of NS into a body and not really influence the serum sodium that much at all. The way you change the serum sodium is by changing the amt of WATER.

Repeat to yourself: "Serum sodium tells you about water balance." and "Saline is not sodium and water." (I used to have a poster of this and have my classes chant it three times before going on J I wanted to be sure they would remember it for later)

OK, deep breath. Now we look at water balance from the other side.

Saline pretty much stays in its vascular place (unless you cut a blood vessel and spill some out). But water....ah, water travels. As a matter of fact, that's the other poster. Repeat three times: "Saline stays, water travels." (think: rivers flow from place to place, but the ocean pretty much stays where it is.) What the heck importance is that?

Back to your original beaker.... the one full of stuff with a serum Na+ of 140. Evaporate half of the water. What is the serum sodium now? Right, 280 (whooee, bigtime dehydration) As a matter of fact, if you lose enough water from your body to get your serum sodium up to 170 or so (("Serum sodium tells you about water balance")), you'll probably die, especially if you do it rapidly. Why? Because water travels in and out of all your cells. If you lose water from your intravascular space, sweat it out, or pee it out because your kidneys are unable to concentrate urine for some reason, thus making your bloodstream more concentrated, water molecules on the other side of the cell walls all over town say, "Whoops! Gotta go!"...because water travels across cell membranes from an area of more water per volume (lower salt concentration) to the area of less water per volume (higher salt concentration). So if you are de-hydrated, meaning water-poor, all your cells shrink. Most importantly, if your brain cells shrink enough from water loss, they pull away from your pia mater/meninges and you have an intracerebral bleed. Bummer.

(Interestingly, this is why you have a headache with your hangover after an alcohol binge. Alcohol temporarily disables your kidneys from retaining water, so they let too much out. You pee a lot, and your brain shrinks just enough to put a little tension on your pia mater/meninges. Bingo, headache.) (Ahhh, digressed again....)

OK, now put this all together and tell me why your hematocrit is a lousy indicator of water balance (as a matter of fact, a nigh-on USELESS indicator of dehydration), but a good indication of saline balance.

OK. You are walking down the street with a perfectly good crit of 40 and a serum sodium of 140 (and normal other lytes). You are accosted by someone with a sharp thing and before you know it, a whole lot of your circulating volume is running into the storm drain. Fortunately, you are whisked into a nearby ER immediately, having had your bleeding stopped by a nearby Boy Scout with good First Aid Merit Badge training (ummmm, I teach that too). The ER nurse draws a baseline crit and lytes. What are they?

OK, crit is still 40...because hct is a *percentage of the blood that is red cells*, not a count of the absolute number of red cells you have. So even if you lose a lot of your blood, your crit is unchanged. Until they start fluid-resuscitating you with.... normal (not half-normal) saline (or RL, which acts like it for purposes of this discussion).

Na+ is still 140, because you have lost saline (serum counts as saline) but not water.

Thought experiment time again. Take two tubes of whole blood, that is, serum and red cells. They both have a Hct ( which is often spoken as “crit”) of 40, that is, 40% of the volume of each tube is taken up solely by RBC's. We already know what happens if you add saline to one of them: the crit drops, right? But what happens to the crit of a tube of blood if you add water-- like D5W? Answer: Nothing. Why? Because the crit is a % of volume....and when you add water, the water travels into the cells too. So they swell up, and their %age size change means no change in the crit of the tube. They still take up (in this example) 40% of the volume. What happens if, instead of adding water to your original tube of hct=40 blood, you evaporate half of the water out of it? (The answer is NOT, "Make gravy." Shame on you.) No, the hct stays the same, because the cells lose water too, and they shrink as much as the liquidy part did. Same percentage of red cells in the resulting volume = no change in hematocrit.

So. When you have someone dehyrated (as evidenced by their elevated serum Na+), you give him water (or D5W). This dilutes his serum Na+ back towards normal and allows his shrunken dehydrated cells to regain their girlish plumpness. Normal saline will not help, as it will not change the serum sodium level ("Saline is not sodium and water") and will not move into cells to restore their lost water content ("Saline stays, water travels.")

If you have someone who is hypovolemic, as evidenced by (hmmm? what? how do you assess hypovolemia? How about BP, CVP, JVD, PAd, LVEDP, etc? You pick 'em), you give him saline, which goes into his vascular space where you want it for circulating volume but doesn't go anywhere else. D5W will not do the job, as it will travel into cells (not just RBC's, but all cells, and most of it will thus not be available in the vascular space to make blood pressure).

So why do dehydrated old ladies have high crits AND high serum Na+'s? Well, as I was fond of telling my students, it's perfectly possible to have two things wrong at once.

Let's look at a couple of people and see if that helps.

1) Serum Na+ 140, Hct 25, BP 110/60. OK, so this guy is relatively anemic, but his circulating volume is OK (as evidenced by an adequate BP) and his water balance is fine (as evidenced by his normal Na+). Who does this? Well, anemia can have many causes, but if he comes in with a hx of a recent bleed with fluid resuscitation, you could guess that he had a perfectly good crit until he lost some red cells out his GI bleed or stab wound or bloody ortho surgery or something, and we were stingy and just gave him NS back. His crit is called "dilutional," as in, "His red cells are floating in saline."

2) Serum Na+ 118, Hct 40, BP 110/60. This guy has 'way too much water on board, as evidenced by his Na+ that's 'way low ("dilutional" too). We call him hyponatremic, but it's not that he has lost sodium (in most cases), it's that he retained too much water. He hasn't lost saline, as evidenced by his decent BP ("Saline is not sodium and water"). Who does this? Well, remember the dread "SIADH"? "Syndrome of inappropriate antidiuretic hormone"? Lessee.... inappropriate, ummm, too much. Antidiuretic, ummmm, doesn't allow diuresis, holds onto water.... Bingo. He's retaining water, and his Na+ is called "dilutional" because all those little Na+s are floating around in too much water. Some degree of SIAHD is actually pretty common--- you can do it with anesthesia, mechanical ventilation (there's stretch receptors in the lungs, see, and....oh, later), and a host of common meds. Of course, you can also get a low serum sodium in a hurry if some fool tanks you rapidly with a liter or two of D5W, or , like that poor woman in a SoCal radio contest, you drink a ton of plain water over a short period of time. She died of acute cerebral edema when her brain swelled up faster than her skull would stretch to accommodate it.

Thanks everyone, I kind of got it now. The case studies really help I think too.

@GrnTea: If you don't mind, does this seem about right for each of your case studies...

For the first one, ideally they would just need a blood transfusion wouldn't they? And possibly isotonic saline? Just a wild guess here but would transfusing that blood back into someone cause their Na+ lab value to decrease in the process too?

For your 2nd example, ideally would that person be giving either a hypertonic or isotonic solution because their Na+ levels are so low too & you need to get the water off that persons cells / brain cells? Like possibly D10 or D5 in 0.45% NS?

Bare with me, we just started our electrolyte chapter last Tuesday :(.

I'm trying to find case studies & guess what type of solution would be used.

Thanks everyone, I kind of got it now. The case studies really help I think too.

@GrnTea: If you don't mind, does this seem about right for each of your case studies...

For the first one, ideally they would just need a blood transfusion wouldn't they? And possibly isotonic saline? Just a wild guess here but would transfusing that blood back into someone cause their Na+ lab value to decrease in the process too?

For your 2nd example, ideally would that person be giving either a hypertonic or isotonic solution because their Na+ levels are so low too & you need to get the water off that persons cells / brain cells? Like possibly D10 or D5 in 0.45% NS?

1) Na+ of 140 is normal and doesn't need fixing, and his BP is OK, indicating that his circulating volume is OK (not hypovolemic). He's anemic because after he lost blood, with all its component cells, they replaced his missing volume with saline (in any form-- NS, D5NS) which stayed nicely in his vascular space ("Saline stays") but diluted his blood so his crit dropped.

Serum Na+ tells you about WATER balance, and is affected by WATER, not by NS.

2) That person might be prescribed hypertonic NaCl (3% NaCl), possibly, to pull water out of his cells, but what he really needs is something to make his kidneys excrete water, since they aren't doing that (I will let you look up what drug class that would be), and a free water restriction (IV and PO) to prevent things from getting worse. He is retaining water (Serum Na+ tells you about WATER balance) inappropriately.

0.45% (half-normal) NS (with or without any dextrose-- dextrose vanishes so fast it's not worth considering in tonicity discussions) would be a bad idea for this person. It would be adding more water because half of it is normal saline (which won't affect serum Na+) and half of it is water (of which he already has too much on board).

+ Join the Discussion